Partial Pressure Analysis with RGAs

AVS MID-ATLANTIC CHAPTER SPRING PROGRAM
April 21, 2005
Jefferson Laboratory
Gerardo A. Brucker

Product Design Manager
Stanford Research Systems, Inc.
1290 D Reamwood Ave
Sunnyvale, CA 94089
(408) 744-9040
gab@thinkSRS.com
www.thinkSRS.com
Education

• **B.S. Analytical Chemistry** - University of Buenos Aires, Argentina (1980-1985)

• **Ph.D. Physical Chemistry** - Colorado State University, Fort Collins, CO (1986-1990)

• **Post Doc Physical Chemistry** - University of Southern California, Los Angeles, CA (1991-1992)
Work Experience

• Stanford Research Systems, Inc. (1992-present)

• www.thinkSRS.com

• Design Engineer, Senior Chemist, Product Manager and Product Design Manager

• Vacuum & Analytical Instruments Division Manager
Job
Design and commercialize scientific instrumentation

Design Philosophy
Build affordable, high quality instrumentation without any compromise in performance.

“All the features and more for half the price”

Vision
Make SRS a brand name in the vacuum and analytical chemistry markets
Preliminary statements
• I am not the vacuum expert in the room. You are!

• What I learn from you today will help me direct SRS’s future efforts in vacuum technology. Share your wishes.

• If I do not know the answer to your question I will let you know.

• The RGA is my baby, but do not let that discourage you.

• I tend to talk too fast. Stop me if it gets out of control.
• In case you did not notice, I do have an accent... Fell free to make me repeat myself.

• Ask questions any time you want, you can bring me back if I get lost.

• Some slides are pretty loaded. Do not worry, I will go through them with you.

• I believe in repetition, don’t get annoyed if I repeat some things a few times....

• Most of what I will say today is in the SRS RGA Manual.
• I will use RGA Windows ver. 3.0 throughout the software demo. Ver 2.3 is officially obsolete.

• I will use the SRS RGA as my model to explain the physics of quadrupole mass spectrometers. However, all quad RGAs work pretty much the same way.

• This seminar is not a substitute for the RGA’s Operation Manual!
About SRS

• Private company
• Scientific and Test & Measurement Instrumentation
• First commercial product 1982 - Boxcar Integrator
• First vacuum product 1995 - SRS RGA
• Wide product range
• R&D engineers have wide responsibilities
• In-house manufacturing
Home > Products

SRS Product Categories

Scientific Instruments
- Small Instrumentation Modules
- Lock-In Amplifiers
- Optical Chopper
- Preamplifiers
- Digital Delay Generators
- High Voltage Power Supplies
- Gated Integrators and Boxcar Averagers
- Photon Counter

Test & Measurement Instruments
- Synthesized Clock Generator
- Synthesized Function Generators
- FFT Spectrum Analyzers
- LCR Meters
- Thermocouple Monitor
- Dual Channel Programmable Filters

Time & Frequency Instruments
- Frequency Standards/Oscillators
- Time Interval and Frequency Counters

Vacuum & Analytical Instruments
- Melting Point Apparatus
- Quartz Crystal Microbalances
- Nitrogen Laser
- Ion Gauge Controller
- Residual Gas Analyzers
- High Pressure Sampling Systems
Vacuum and Analytical Instruments

Melting Point Apparatus (OptiMelt)
- MPA100 Automated Melting Point System

Quartz Crystal Microbalance
- QCM100 Quartz Crystal Microbalance
- QCM200 Quartz Crystal Microbalance

Nitrogen Laser
- NL100 Nitrogen Laser

Ion Gauge Controller
- IGC100 Ion Gauge Controller
- PG105U Pirani Gauge
- Bayard-Alpert Gauges

Residual Gas Analyzers
- RGA100 100 amu Residual Gas Analyzer
- RGA200 200 amu Residual Gas Analyzer
- RGA300 300 amu Residual Gas Analyzer
- PPM100 Partial Pressure Monitor for RGA
- CIS100 100 amu CIS Analyzer
- CIS200 200 amu CIS Analyzer
- CIS300 300 amu CIS Analyzer

High Pressure Sampling Systems
- QMS100 100 amu Atmospheric Sampling System
- QMS200 200 amu Atmospheric Sampling System
- QMS300 300 amu Atmospheric Sampling System
- PPR100 100 amu Process Monitoring System
- PPR200 200 amu Process Monitoring System
- PPR300 300 amu Process Monitoring System
Vacuum Products
RGAs and Gas Sampling Systems
Residual Gas Analyzer (RGA)

...starting at $3,750...

- 100, 200 and 300 amu systems
- Better than 1 amu resolution
- 6 decades of dynamic range
- 5×10^{-14} Torr detection limit
- RGA Windows & LabVIEW software
- Field-replaceable electron multiplier and filament
- RS-232 interface
Did the world need another RGA?

Yes!

SRS RGA was designed with these goals in mind:

- Low Cost
- Serviceability
- Reliability
- Ease of Use
Unique features

- Simplicity of Design (minimalist’s approach)
- Self aligned probe assembly
- UHV compatible
- Small insertion volume
- Low surface area (rapid pump-down)
- Low Maintenance
- Field replaceable: filament, ionizer, multiplier
- Long life, state-of-the-art electron multiplier
- Computer Interface w/high level command set
- Powerful; operating modes built into RGA head
- Multiplexing capability
more unique features...

- Built-in filament and multiplier protection
- Removable source
- Upgrade options for detector and mass range
- Stable operation
- Built in power module
- Logarithmic pico-ammeter (auto-ranging electrometer)
- LED Status indicators
- Free software
- Multiplexing capabilities
- Ion Counting output (electron multiplier)
- Low cost
- Good Manual
How many SRS RGA’s does Jefferson Lab own?

26 RGA200 & 51 RGA100 - starting Jan 1996 (as of 4/5/2005)
Process Pressure Reduction System (PPR)

- 0.01, 0.1, 1.0 or 10 Torr inlet pressure
- 3×10^{-5} Torr-L/s flow rate
- 2 second response time (0.1 Torr)
- 100, 200 or 300 amu systems
- Field-replaceable electron multiplier and filament
- 6 orders of magnitude dynamic range
- RGA Windows software
Closed Ion Source System (CIS)

- 100, 200 and 300 amu systems
- 1 ppm detection
- 10 mTorr max. operating pressure
- 1×10^{-12} Torr detection limit
- RGA Windows software
- Field-replaceable electron multiplier and filament
- RGA and CIS mode
Atmospheric Sampling System (QMS)

- 100, 200 or 300 amu systems
- Pressures from 10 mbar to 1 bar
- Better than 1 amu resolution
- <0.5 second response time
- Compact, transportable design
- 6 decades of dynamic range
- RGA Windows software
- RS-232 computer interface
Vacuum System Controllers
Ionization Gauge Controller (IGC100)

- 1000 Torr to UHV range
- Highly accurate, stable controller
- Pressure vs. time curves
- 4 analog input/output ports
- RS-232 interface
- 8-channel process control (opt.)
- GPIB and Web interfaces (opt.)
LCD Display

Numeric readout, bar graph, and chart display.

Pressure vs.

8-channel process control
Web Access.....

Sample of IGC100 web page

Check and control your system from your desk...
Loaded back panel......

Interface
- RS232
- GPIB
- Ethernet

Process Control
- Relay
- TTL
- Anlg I/O

Ion Gauge
- Glass
- Nude
- Stabillon
- Microlon

Pirani Gauge
- Convelectron
- HPS
- PG105
- Instrutech

Capacitance Gauge

... powerful Vacuum System Controller
Pirani Gauge (PG105-UHV)

- 1000 Torr to 10^{-4} Torr range
- UHV compatible
- Bakeable to 250 °C
- Fast response time
- Compatible with IGC100 controller
Partial Pressure Monitor (PPM100)

- Stand-alone RGA controller
- 8-channel process control
- Pressure vs. time curves
- 4 analog input/output ports
- RS-232, GPIB and USB interfaces
- Ethernet interface
- PPM100 ... $2295 (U.S. list)
Monitor mode

Chart recording mode
Vacuum System Controller

PC Interface

CM

Analog I/O

Process Control

RGA

PPM100 rear panel
Quartz Crystal Microbalance (QCM200)

QCM200 Quartz Crystal Microbalance

Gas, Biological, Particulate and Electrochemical Sensor
Nitrogen Laser (NL100)

- 337 nm wavelength
- 170 μJ pulse energy
- Internal or external triggering to 20 Hz
- Replaceable laser cartridge
- No mirror alignment necessary
- TTL level sync output pulse (opt.)
- Fully compatible with VSL-337i OEM
Applications of SRS Quadrupole Mass Spectrometers Models RGA100, RGA200 and RGA300 to Residual Gas Analysis and Leak Detection
Complete characterization of a vacuum environment requires the analysis of the gases present, as well as measurement of the total pressure.

The instruments used for this purpose are called Residual Gas Analyzers or Partial Pressure Analyzers.
What is an RGA?

RGA = Residual Gas Analyzer

An RGA is a mass spectrometer of small physical dimensions that can be connected to a vacuum system and whose function is to analyze the gases inside the vacuum chamber.
How does it work?

An RGA is a low resolution mass spectrometer

A small fraction of the gas molecules are ionized (+ ions), and the resulting ions are separated, detected and measured according to their molecular masses.

Most RGAs are quadrupoles and separate the ions based on their mass-to-charge ratios.
The SRS RGA is a mass spectrometer consisting of a quadrupole probe and an electronics control unit (ECU).

The probe mounts directly on the vacuum chamber.

The ECU mounts on the probe and contains all the electronics required to operate the instrument.

RGA Windows completes the package.
Quadrupole Probe

The probe is the place where the gas molecules (analyte) are ionized, separated based on their mass/charge and detected and measured as an ion current.
The total probe equipment consists of three parts:

1. Ionizer
2. Quadrupole Mass Filter
3. Ion Detector

All three parts reside in the vacuum space where the gas analysis measurements are made.
A stainless steel tube (RGA Cover Nipple) covers the probe assembly with the exception of the ionizer.

Do not remove!
Insertion Volume

A 2.75” CF port with at least 1.375” ID and 2.5” depth is required to provide clearance for insertion of the ionizer into the vacuum system.

This insertion volume is comparable to that taken by a standard B-A ionization gauge.
CF Mount

Attach the RGA Probe directly to your vacuum system. Make sure to use OFHC/Cu gaskets.
Good Vacuum

A good vacuum environment - 10^{-4} Torr or less- is required for reliable operation.

The vacuum range is slightly higher if you are just looking at light gases.
Max Insertion Nipple
O100MAX

Use the Max Insertion Nipple if you need to bring the ionizer into the chamber.
Heating Jacket
O100HJR
200 Celsius

Remove ECU during bakeouts!
Probe Bakeout

Bakeout is recommended:

• After installation into the vacuum chamber

• After exposure to air

• When background contamination is evident in the spectra

• When performance degradation due to contamination is evident.
Bakeout Procedure

- Turn off the RGA and disconnect the ECU
- Attach the heating jacket (O100HJC)
- Make sure the pressure is below 10^{-5} Torr
- Establish a slow flow of dry N_2 gas if desired (scrubber).
- Bake the probe for at least 12 hours (i.e. overnight)
- Wait for the unit to cool down
- Mount the ECU back on the probe
- Run analog spectra to check the integrity of the spectrometer and measure contamination levels.
Ionizer

Open Ion Source

The pressure at the ionizer is the same as in the rest of the analyzer.

Residual gas molecules flow freely through the grid assembly.
Ionizer

Cross-section View

Cross section of the SRS Open Ion Source (OIS)
Open Ion Source

- Wire Mesh Construction
- Cylindrical symmetry
- Coaxial with quadrupole filter

SS 304 Construction
Self aligning
Low outgassing
Field Replaceable (O100RI)
Filament

The filament is the source of the electrons used to ionize the gas molecules

- Circular design
- ThO₂·Ir material
- Negative potential
- Resistive heating
- Closed-loop on emission current
- Dual filament operation
- Filament protection
Anode Grid

The thermionically emitted electrons are accelerated towards the anode grid, which is positively charged relative to the filament. Because of the open design of the anode grid cage, most electrons do not strike the anode immediately, but pass through the cage where they create ions through electron impact ionization (EII).
The ions produced within the anode grid volume, are extracted from the ionizer by the electric field produced by the difference in voltage bias between the anode grid and the focus plate.

The focus plate is kept at a negative potential and its function is to draw the ions out of the anode cage and focus them into the filter section.
The repeller cage, which completely encloses the ionizer, is biased negative relative to the filament and prevents the leakage of electrons out of the ion source. It also provides mechanical protection for the delicate filament.
Electron Impact Ionization

Basic Requirements

• Maximum pressure $<10^{-4}$ Torr
• Linearity $<10^{-5}$ Torr
• Adjustable bias voltages and electron emission current
Ionizer Settings

RGA Windows provides direct access to all ionizer parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Default</th>
<th>Range</th>
<th>Min. Incr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron Energy</td>
<td>eV</td>
<td>70</td>
<td>25 to 105</td>
<td>1</td>
</tr>
<tr>
<td>Emission Current</td>
<td>mA</td>
<td>1.00</td>
<td>0 to 3.5 mA</td>
<td>0.02</td>
</tr>
<tr>
<td>Ion Energy</td>
<td>eV</td>
<td>12</td>
<td>8 (low) or 12 (high)</td>
<td>NA</td>
</tr>
<tr>
<td>Focus Voltage</td>
<td>V</td>
<td>-90</td>
<td>0 to -150</td>
<td>1</td>
</tr>
</tbody>
</table>
Default Settings

High ion energy (12eV), 1mA emission, 70eV electrons, -90V focus voltage
Electron Energy

• Voltage difference between the filament return bias and anode grid bias.

• 25 to 105eV, 70eV default.

• Use low energies to reduce multi-ionization, fragmentation and process interference.

• Use higher energies to improve signal/noise

• Use external voltage sources to lower the energy further
Ion Energy

• Kinetic energy of the ions as they fly through the quadrupole mass filter

• Bias voltage of the anode grid

• Limits the ultimate resolution of the filter (0.3 amu [low], 0.5 amu [high])

• Use High energy for higher signal/noise

• Use low energy for higher resolution
Focus Voltage

- Range: 0 to -150V, default: -90V
- Adjust to optimize S/N and to eliminate negative background at low masses.
- For Faraday Cup, set 30V more negative than the repeller to eliminate electron leakage into the quadrupole.
Electron Emission Current

- Electron current from the filament to the anode grid. Controlled by feedback loop.

- Ion signal directly proportional to electron emission current

- Range: 0 to 3.5 mA, default: 1 mA.

- Use higher values for higher S/N.

- Use lower values for improved pressure range, increased linearity and reduced outgassing and ESD.
Ionizer Degas

• An ionizer Degas program is built into the RGA Head to clean up the filament and the ionizer by Electron Impact Desorption.

• Degassing is a fast way to clean the ionizer but compromises the lifetime of the filament.

• Whenever possible substitute a degas procedure with a proper bakeout.

• Let the RGA cool down for at least 10 minutes after a degas.

• Try not to use it!
Quadrupole Mass Filter

Positive ions are transferred from the ionizer into the quadrupole where they are filtered according to their mass/charge. Ions that successfully pass through the QMF are focused towards the detector by an exit aperture held at ground potential.
Mass Filter

1/4” OD cylindrical rods

304 SS

100 microin tolerance

4.5” long
QMF-Principle of operation

Four rods in perfect quadrature, with the two opposite rods connected together electrically.

Two-dimensional (x-y) quadrupole field.

\[U + V_0 \cos \omega t \]

High-pass filter

\[-(U + V_0 \cos \omega t) \]

Low-pass filter

\[U + V_0 \cos \omega t \]

Band-pass filter
Ions enter along the z-direction and start oscillating in the X & Y directions. The ions are separated based on their mass-to-charge ratio by lateral forces resulting from the dynamic electrical potentials applied to the rods.

A combination of DC and RF voltages control the quadrupole filter operation.

Successful isolation of a specific mass species requires setting the RF/DC such that only the ions of interest have stable trajectories down the rod assembly.
Rule-of-Thumb

RF amplitude sets the mass
DC/RF sets the resolution

Mass Spectra

By simultaneously varying the amplitude of the DC and RF voltages, while recording the resulting ion currents, an entire mass spectrum can be scanned.
Figures of Merit
Mass Range

Range of masses defined by the lightest and heaviest single charged ions which can be detected by the mass spectrometer

RGA100: 1-100 amu
RGA200: 1-200 amu
RGA300: 1-300 amu

SRS RGA uses the same probe design and same RF frequency for the three ranges
Resolution (absolute)

$\Delta M_{10\%}=1 \text{ amu typ.}$

The width ΔM of the pass band of the filter, defined as the full width at which the ion current falls down to 10% of the maximum value.
Resolving Power

\[R = \frac{M}{\Delta M_{10\%}} \]

Ratio between a particular mass \(M \),
and the absolute resolution \(\Delta M_{10\%} \) at
that mass

Sensitivity (throughput) decreases at 1 to 1.5
times the rate of resolving power increase.

The throughput of the analyzer decreases with
mass.
Positive ions that successfully pass through the quadrupole are focused towards the detector by an exit aperture held at ground potential. The detector measures the ion currents directly (Faraday Cup) or, using an optional electron multiplier detector, measures an electron current proportional to the ion current.
Detector Assembly

Detection Limits:
(typ.)
FC: 10^{-10} Torr
EM: 10^{-13} Torr
Faraday Cup

Small stainless steel 304 metal bucket located on-axis at the end of the quadrupole. Grounded bias.
Multi-channel (4 or 6) Continuous Dynode Electron Multiplier (CDEM). Straight glass tube with a cone of the same material attached to the front end. Placed upright, next to the FC, and away from the axis of the QMF.
Off-axis configuration

FC detection is standard in all RGA probes. FC units can be upgraded to a CDEM detector (factory).
Faraday Cup Operation

\(P > 10^{-8} \) Torr

The FC detector measures the incident ion current directly. Positive ions enter the grounded bucket, strike the metal wall, and are neutralized by electron transfer from the metal to the ion. The electrons given up in the process establish an electrical current that has the same magnitude as the incoming ion current.

Advantages

- Simplicity
- Stability
- Dynamic range
- No mass dependence
- No pressure dependence

Detection Limit:

\(10^{-10} \) Torr

Sensitivity:

\(10^{-4} \) Amps/Torr

\((N_2 @ 28 \text{ amu}) \)
CDEM Upgrade

An electron multiplier upgrade is recommended when (1) the RGA is operated routinely under 10^{-8} Torr, (2) when faster scan rates are required, (3) when a larger dynamic range is necessary, (4) when peaks need to be pulled out of the noise, and (5) when ion counting is required.
CDEM Operation

P < 10^{-8} Torr

When the cone is biased negatively (-1000 to -2500V) relative to the FC, positive ions are attracted away from the FC and strike the cone at high velocity producing electrons by secondary electron emission. The secondary electrons are subsequently accelerated down the channels and produce more secondary electrons. Depending on bias voltage, up to 10^7 electrons come out at the back end and are picked up by the grounded CDEM anode plate. The resulting electron current is proportional to the incoming ion current and is measured by the same logarithmic electrometer as the FC current.

The gain of the CDEM is a function of the bias voltage and is measured relative to the FC signal.

An automatic Gain Adjustment mode was built into RGA Windows.
CDEM Operation ctd.

Detection Limit:
10^{-13} Torr

Gain (typical):
$100 \text{ - } 1000x$

Gain Ion Counting:
10^6 typ.
CDEM Operation ctd.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>High gain</td>
<td>Gain Degradation</td>
</tr>
<tr>
<td>Excellent S/N</td>
<td>Mass discrimination ($M^{1/2}$)</td>
</tr>
<tr>
<td>Fast Scans</td>
<td>Current Saturation</td>
</tr>
<tr>
<td>Electron discrimination</td>
<td>Low pressure limit ($<10^{-5}$ Torr)</td>
</tr>
<tr>
<td>Ion Counting (Option 03)</td>
<td>Bakeout limitation ($<100^\circ C, 300^\circ C$)</td>
</tr>
<tr>
<td>Field Replaceable</td>
<td></td>
</tr>
</tbody>
</table>
CDEM Gain (nominal)

Gain vs HV Bias (V)

Gain

HV Bias (V)

Analog Current

Ion Counting
Gain Adjustment
How does it work?

1. Select RGA Windows / Head Menu/ CEM Settings
2. Enter a Gain (100 or 1000, typical)
3. Enter a Reference Mass (M_{Ref})
4. Press Adjust
5. The QMF is parked at M_{Ref}.
6. The FC ion current, I_{FC}, is measured.
7. I_{FC} is multiplied by the Gain to provide the target current: I_{FC} \times \text{Gain}=I_{target}.
8. The ECU switches to CDEM detection.
9. Starting at a low bias voltage, the CDEM current, I_{CDEM}, is measured.
10. Compare I_{CDEM} to I_{target}.
11. Adjust the bias voltage until the I_{CDEM} current matches or slightly exceeds I_{target}.
12. Save the gain and voltage to the RGA head.
Probe Maintenance

• Filament Replacement
• Ionizer Replacement
• Probe Cleaning
• Electron Multiplier replacement
• Electron Multiplier Refurbishment
• Mass Tuning
• Sensitivity Tuning
• Leak Rate Tuning
Electronics Control Unit (ECU)

The ECU mounts directly on the RGA Probe and contains all the electronics required to operate the mass spectrometer.
ECU Basics

The ECU is powered by either an external 24VDC (@2.5 amps) power supply or an optional, built-in power module which plugs directly to an AC outlet.
ECU-Rear Panel

- Status LEDs
- RS232
- AC Power
- Backpack
- 24Vdc P/S
- Locking Knobs

24Vdc Power Supply
RS232 Interface
Status LEDs
Locking Knobs
AC Power Input
Warnings

• Do not operate the ECU above 70 degrees Celsius

• Follow the High Voltage warnings on the box

• Make sure the locking knobs are tight

• Ground the ECU to the Facility ground
ECU Components

- Regulated power supplies (Ionizer)
- Logarithmic Electrometer (pico-ammeter)
- Current calibrator
- RF & DC supplies (QMF)
- HV P/S (CEM)
- Built-in Microprocessor
- Control Firmware
- RS232 Interface
- Status LEDs
- I/O connectors
Logarithmic Electrometer

A temperature compensated, logarithmic pico-ammeter built into the ECU box measures the ion currents collected by the FC, and the electron currents delivered by the CDEM.

The output of the electrometer is proportional to the logarithm of the ion current so that several decades of current can be read without any gain switching.

The microprocessor automatically configures the electrometer and connects its input to the correct signal based on the type of detector selected.

The electrometer is auto-ranging and temperature compensated
Logarithmic Electrometer

• The electrometer measures both positive and negative currents (automatic and autoranging)

• Current range: 10^{-15} Amps to $1.32 \cdot 10^{-7}$ Amps.

• The electrometer response can be calibrated at any time thanks to a built in current source.

• Use RGA Windows/Head Menu/Calibrate Detector to update the electrometer’s calibration

• The electrometer also auto-zeroes at the beginning of each scan.
Current Averaging

The amount of averaging and the data acquisition rates for scans and single mass measurements are set by the Scan Speed (or Noise Floor) parameter:

<table>
<thead>
<tr>
<th>SS</th>
<th>NF</th>
<th>Scan msec/amu</th>
<th>Single Mass msec/mass</th>
<th>Baseline Noise Amps</th>
<th>(std. dev.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2000</td>
<td>2200</td>
<td>7e-15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1000</td>
<td>1100</td>
<td>1e-14</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>400</td>
<td>440</td>
<td>1.5e-14</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>200</td>
<td>220</td>
<td>2.0e-14</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>126</td>
<td>139</td>
<td>4.0e-14</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>45</td>
<td>50</td>
<td>1.2e-13</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>30</td>
<td>33</td>
<td>2.5e-13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>15</td>
<td>16.5</td>
<td>5e-13</td>
<td></td>
</tr>
</tbody>
</table>

No Averaging

Lots of Averaging
QMF Power Supply

All the electronics required to power the QMF are built into the ECU box.

The RF/DC levels for each mass are set and regulated from the ECU, under strict microprocessor control, and based on internal tuning parameters permanently stored in non-volatile memory.

Tuning parameters are pre-loaded at the factory as part of the test & cal procedure performed prior to shipment (i.e. ready to go out of the box).
QMF P/S

The RF/DC tuning parameters can be tweaked at any time using the Peak Tuning Procedures supported by RGA Windows.

RF Frequency: 2.7648 MHz

RF Voltage: 8.56 Vpp/amu

DC Voltage: 1.4V/amu
The SRS RGA mass axis is calibrated using a mixture of: He (lo mass), Ar, Kr and Xe (hi mass).

For 300 amu units PFTBA and perfluoronononane are used to check the entire range.

Calibrated mixtures are available from third parties for routine mass tuning.
PC Interface

- The SRS RGA includes a complete ASCII command set.

- The SRS RGA includes a RS232 serial communication port.

- SRS provides RGA Windows to interface the SRS RGA with a PC and perform standard measurements.

- SRS also provides a complete LabView Development Kit to implement custom measurement setups.
Partial Pressure Measurement

Partial pressure signals with the SRS RGA are determined with the help of previously calculated sensitivity factors by reference to the abundance (i.e. peak current) of the individual mass numbers (i.e. principal peaks) attributed to each gas type.

For example: The partial pressure of N\textsubscript{2} is determined measuring the ion peak current at 28 amu and using the corresponding sensitivity factor to scale that number into Torr.
Partial Pressure Sensitivity

The partial pressure sensitivity of the RGA to a gas g, S_g, is defined as:

$$S_g = \frac{H-H_0}{P-P_0}, \text{[Amps/Torr]}$$

Where,

- $H-H_0$: change in principal mass peak height, [Amps], FC currents are used to determine sensitivities.
- $P-P_0$: change in total pressure due to a change in partial pressure of the gas, Torr.
- H_0 and P_0 are background values.
Partial Pressure Sensitivity

The sensitivity of the RGA varies with:

- Different gases
- Ionizer settings
- QMF settings
- Detector settings
- Aging of the unit

Careful quantitative analysis requires that the sensitivity factor, S_g, be determined for every gas which maybe a component in a mixture being analyzed. Spectral deconvolution is recommended in the presence of spectral overlaps.
Quantitative measurements

Even with careful in-situ calibration, independent studies have shown that RGA’s should not be expected to deliver better than 3% accuracy for gas analysis measurements.
The nominal sensitivity factor for the SRS RGA is:

\[10^{-4} \text{ Amps/Torr} \]

for \(\text{N}_2 \) at 28 amu and FC detection.

A unit specific sensitivity factor is loaded into each SRS RGA prior to shipment as part of the factory test&cal procedure.

A Sensitivity Tuning procedure is available through RGA windows to adjust the sensitivity factor in the field.
Nitrogen-Equivalent Readings

A single sensitivity factor is used to calculate all partial pressures in an analog scan. Since the sensitivity factor is based on nitrogen, all partial pressure readings are labeled as: nitrogen-equivalent readings.
Tuning Procedures

- Sensitivity Tuning
- Leak Rate Tuning (Jefferson Lab)
- Peak Tuning (Mass Tuning)
- Electron Multiplier Gain
- Gas Conversion Factors
Tuning Procedures

- UHV and XHV systems have very little impact on RGA tuning parameters.
- UHV and XHV users should rarely need to perform any of the available tuning procedures described in the SRS RGA Manual.
Mass Units - amu

Since molecules are so small it is convenient to define a special type of mass units to express the masses of individual ions:

• The atomic mass unit, amu, defined as 1/12 of the mass of a single carbon atom, isotope \(^{12}\text{C} \), is the unit of molecular mass most commonly used in mass spectrometry.

• \(1 \text{ amu} = 1.660540 \times 10^{-27} \text{ kg} \).
Mass number

- The mass number, M, is the sum of the number of protons and neutrons in a molecule.
- To a very close approximation the mass of a molecule, in amu, is equal to its mass number. This is particularly valid for low resolution mass specs such as RGAs.
Mass-to-charge

- Mass spectrometers do not actually measure the molecular mass directly, but rather the mass-to-charge ratio of the ions.
- The mass-to-charge ratio, M/Q, is defined as the ratio of the mass number M of the ion to its charge Q, measured in units of the electron charge e^-.
- For example, $^{36}\text{Ar}^{2+}$ and $^{1}\text{H}_2^{16}\text{O}^{1+}$, both have $M/Q = 18$ and cannot be differentiated from each other by an RGA.
Mass of an ion

- For singly charged ions, the mass/charge is numerically equal to the mass of the ion in atomic mass units.
- RGA users often use the term “mass-of-an-ion” when they really mean the mass/charge. This convenient way of speaking is strictly valid for singly charged ions only.
What are RGA’s used for?

RGAs are widely used to identify the kinds of molecules present in a residual gas environment.

When properly calibrated, an RGA can be used to determine the concentrations or absolute partial pressures of the components of a gas mixture.
Areas of application...

- Residual Gas Analysis (HV, UHV and XHV)
- Surface Science (TPD, SIMS, laser ablation, adsorption, etc)
- Materials Science (i.e. outgassing, sorption)
- Gas Analysis (Atmospheric Sampling, MIMS, GC-RGA, IMS-RGA, TGA-MS)
Specific applications...

- Leak Detection (not just He)
- Package Testing (Inside-out leak testing)
- Cryogenic Dewar testing
- Trapped gas studies (bubbles)
- Molecular beam monitoring
- Vacuum Oven monitoring
- Volcanic gas monitoring
- Underwater sampling
- Environmental testing
- VOC detection
- Laser ablation
more applications...

- Miniature mass spec development (gold standard)
- Droplet and Aerosol Beam analysis
- Fluid Inclusions (petroleum)
- Cluster Studies
- TGA-MS (evolved gas)
- Pollution studies
- Portable MS systems
- Adsorption studies
- Water analysis
- Plasma monitoring
- Accelerators (XHV)
Semiconductor applications

- Leak Detection (dynamic and crisis, background check)
- In-situ process monitor (in-chamber)
- Gas delivery monitor (on-line)
- Equipment diagnostics (mass flow controllers, valves, etc)
- Pump-downs
- Rate-of-rise
- End point detection
- Photoresist residues
- MBE beam flux and diagnostics
- Flat panel manufacturing
- “Good process” fingerprinting
- Exhaust management
What are the Challenges?

• High pressures (differential pumping)
• Nasty Gases (reactive, corrosive, toxic)
• Harsh Environments (plasmas, heaters, guns)
• < Ppm requirements
• Large pressure range
RGAs are routinely used to monitor gases at pressures above their maximum operating pressure of 10^{-4} Torr.

Differential pumping is typically used to introduce the gases into the RGA chamber.

Alternative sampling schemes involve membrane inlet systems.
For pressures <10 Torr....

Single stage differential pumping - PPR
Single stage differential pumping

Performance:

- **Inlet pressure:** 10^{-4} to 1 Torr
- **RGA Pressure:** 3×10^{-6} Torr
- **Gas flow:** $\sim 10^{-4}$ Torr L s$^{-1}$
- **Response time:** 20 s @ 1 Torr inlet pressure (scales linearly with pressure)
Advantages

- Low cost
- Simple design
- Flexible design
- Low Maintenance
- Dual Valve
- Low Det. Limit (10^{-10} Torr FC)

Disadvantages

- Background interf. (H_2O)
- Process interf. (Ar)
- >100ppm water
- Slow response
- History effects
- Wall effects

- $0.34\% Ar^+ (36)$, 350 ppm $Ar^{++} (18)$ -
- 10^{-8} Torr H_2O background, $3 \cdot 10^{-6}$ Torr RGA pressure
$10^{-4} - 10^{-2}$ Torr
CIS advantage

Figure 3: Schematic diagram of the CIS
<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct immersion</td>
<td>Expensive</td>
</tr>
<tr>
<td>Signal/Background</td>
<td>More maintenance</td>
</tr>
<tr>
<td>CIS/RGA operation</td>
<td>Long term stability</td>
</tr>
<tr>
<td>Low Fil. Emission</td>
<td>Filament life</td>
</tr>
<tr>
<td>W and ThO$_2$ fil.</td>
<td>Contamination</td>
</tr>
<tr>
<td>Low ESD</td>
<td>Degradation</td>
</tr>
<tr>
<td>CIS35 mode</td>
<td></td>
</tr>
<tr>
<td>1ppm water</td>
<td>- $0.34%$ Ar$^+(36)$, 350 ppm Ar$^{++}(18)$ -</td>
</tr>
<tr>
<td>Faster response</td>
<td>10^{-8} Torr H$_2$O background, 10^{-2} Torr Ionizer pressure</td>
</tr>
</tbody>
</table>
10 Torr to Atm...
Bypass pumping - QMS

Inlet pressure: 10 Torr to 1 atm
Inlet: Capillary
Flow rate: 1 to 10 mL/min (@ atm)
RGA Pressure: 3 × 10⁻⁶ Torr
Interstage pressure: 1 Torr
Response time: <0.5 second
Capillary: 125 micron
Aperture: 25 micron
<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast response</td>
<td>Light gas backstreaming</td>
</tr>
<tr>
<td>Compact</td>
<td>Reactive gases</td>
</tr>
<tr>
<td>Rugged</td>
<td>Corrosive gases</td>
</tr>
<tr>
<td>Closed loop</td>
<td></td>
</tr>
<tr>
<td>Capillary materials</td>
<td></td>
</tr>
<tr>
<td>Closed Loop</td>
<td></td>
</tr>
</tbody>
</table>
Light Gases - Hydrogen

H₂ gas behavior in QMS

Inlet valve On

Inlet valve Off

On

Sample valve

Off

Time (sec)

1E-8

1E-7

1E-6

1E-5

1E-4

1000 mbar

1-5 mbar

10⁻⁶ mbar

RGA

Inlet

Capillary

Aperture

Sample Valve

Bypass Valve

Hybrid Turbo Pump

Diaphragm Pump

H₂ behavior in two-pump configuration

Sample valve On

On

Inlet valve Off

Inlet valve On

(base line)

Time (sec)

1E-8

1E-7

1E-6

1E-5

1E-4
Reactive Gases - No SO_2 Signal

5th scan--about 1.5 hours running

68th scan--about 20 hours running
Corrosive gases

- Corrosion resistant TP
- Corrosion Resistance DP
- Dual Pump Configuration
- Coatings
- Filament Materials
Basic Operating Modes

The firmware built into the RGA Head, completely controls the operation of the instrument and provides four basic modes of operation:

• Analog Scan
• Histogram (Bar Graph) Scan
• Single Mass Measurement
• Total Pressure Measurement
PC Interface

- RGA Windows provides easy access to all RGA mass spec functions without any need for computer programming.

- SRS RGA can also be programmed directly using the RGA Command Set supported by its PC interface.

- A LabView development Kit is also available from SRS.
RGA Windows

- RGA Windows simply provides a graphical interface to display the mass spectrometer’s data in a format compatible with residual gas analysis needs.

- All the necessary calibration and tuning parameters of the spectrometer are stored in the RGA Head itself. SRS RGA is a true stand-alone mass spectrometer.

- The basic operating modes supported by RGA Windows are based on the four basic operating modes supported by the head’s firmware.
RGA Windows

- Latest version 3.0
- Version 2.3 is officially obsolete!
What’s new?

• 32 bit platform compatible
• Multi-thread support
• Faster response
• New RS232 connection panel
• Full support of Windows 98, 2000, XP
• Support of higher screen resolutions
• New toolbars and buttons
• Improved Help engine - Includes What’s New?
• Virtual instrument connection- training
New Mass Spec Functions

- Scan w/out filament - good for scientists
- Improved “P vs. time” saves on the fly (unlimited saves)
- Larger “P vs time” buffer (256Mbytes)
- Logging for all scan modes (unlimited saves)
- Global settings for Table and “P vs. time”
- Improved Leak Testing
- New Leak Calibration menu
- Running averages for analog scans
- New Scan Setup button
- New Schedule button
- Improved Library Search
More New MS Functions

• New CDEM toggle button
• New CDEM Settings menu item
• New End Button
• New Progress Cursor in Histogram mode
• New Leak Rate Calibrator option
• New Maintenance Schedule
• Autocomplete gas names in Table setup
New Graphing Functions

- New Linear/Log Y-axis button
- New Control View Tool Bar - zoom, pan, scale
- Real-time graphical cursor in all modes
- View on/off for all gas traces in P vs time.
- New Active Graph objects - left mouse button
- New legends for “P vs. time”
- Improved Analyze mode
- Analyze logging fully implemented
- Floating Scan and Schedule setup windows
Analog Scanning
Analog Scanning

• The most basic mode of operation of the RGA as a quadrupole mass spectrometer

• During analog scanning, the quadrupole mass spectrometer steps at fixed mass increments through a pre-specified mass range. The ion current is measured after each mass increment and transmitted to the host computer over RS232

• RGA Windows collects the data and displays it in a mass spectrum format: ion current (or partial pressure) vs. mass
Main Uses

• Peak tuning
• Fractional mass detection
• Peak shape characterization
• Mass spec performance characterization
• Reality check before “P vs time”
• S/N analysis and Scan Speed optimization
• Blind scan logging
Analog Scan Example

Calibration Gas at 8E-7 Torr (Faraday Cup)

New Graph Toolbar
Sharp Peaks
Cursor
He/Ar/Kr Mixture
Clean Baseline

X = 40.0 Y = 8.44e-008
Oil Contamination

Vacuum Diagnosis

Scan Setup

Schedule Setup

H$_2$O

Oil

41 43

55 57

Atomic Mass Units
Oil Contamination

- Look for clusters at 41/43, 55/57 and so on.
- Clusters in 14 amu increments
- -CH2- : 14 amu
- Use scan logging to track oil contamination
Oil Contamination

• Bakeout often
• Use traps, cold fingers and water cooled baffles
• Avoid organic cleaning solvents
• Use oil-free pumping systems
• Use water based cleaners
• Avoid elastomers and plastics
• Avoid lubricants and greases
• Clean parts before exposure to vacuum
Vacuum Cleaning

• Mr. Clean!
• Micro cleaner - from Cole-Parmer
• Branson ultrasonic cleaner
• Luminox- for aluminum parts
• Lots of rinsing.....left over detergent outgasses
• Deionized water to rinse
• Hot water is better
• Vacuum baking is always good
Abundance Sensitivity

- 6 decades autoranging
- 15ppm - 2amu away

Floating Scan Setup
Histogram Scanning
Histogram Scan

• The Histogram (Bar Graph) scan consists of a succession of individual peak-height measurements over a pre-specified mass range. A single value is used to represent the peak heights at each integer mass within the range.

• Peak height measurements are done based on the Peak Locking (Miniscan) procedure described in Single Mass Measurement.
Advantages

• Very popular display mode
• Reduced amount of data
• Simplified mass spectrum representation
• Faster spectral interpretation
Histogram Scan Example

Scan Schedule Setup
Single Mass Measurement
Table Mode

- SRS RGA can measure individual peak heights at any integer mass within its mass range.
- RGA windows uses this measurement mode to collect its data for: Table, Pressure vs. time, Annunciator and Leak Detection modes.
Peak Locking

• During a single mass measurement the RGA head performs a “Miniscan” around the mass requested and the maximum current value detected is sent out over RS232.

• This scanning procedure is called Peak Locking and is designed to correct against drifts in the mass axis calibration.

• The Miniscan covers a 0.6 amu range centered at the mass requested, and selects the maximum current from 7 individual measurements performed at 0.1 amu mass increments.
Uses of Single Mass Measurement

- Collect data for Table, Annunciator, “P vs. time” and Leak Detection Modes.
- Link the Single Mass data to PLCs.
- Reduce the amount of data collected vs. scan logging.
- Display “corrected” partial pressures in real time.
- Extend the dynamic range by toggling between FC and CDEM measurements.
Table Mode Setup

Floating setup

<table>
<thead>
<tr>
<th>Ch#</th>
<th>Name</th>
<th>Mass</th>
<th>mBar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydrogen</td>
<td>2</td>
<td>3.3E-08</td>
</tr>
<tr>
<td>2</td>
<td>Water</td>
<td>18</td>
<td>3.9E-08</td>
</tr>
<tr>
<td>3</td>
<td>Nitrogen</td>
<td>28</td>
<td>9.4E-09</td>
</tr>
<tr>
<td>4</td>
<td>Oxygen</td>
<td>32</td>
<td>1.8E-09</td>
</tr>
<tr>
<td>5</td>
<td>CO2</td>
<td>44</td>
<td>4.4E-09</td>
</tr>
<tr>
<td>6</td>
<td>Oil</td>
<td>55</td>
<td>6.6E-09</td>
</tr>
<tr>
<td>10</td>
<td>Floor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Auto Fill

- Ch 1: Hydrogen
- Ch 2: Water
- Ch 4: Oxygen
- Ch 5: CO2
- Ch 6: Oil
- Ch 10: Floor

Global Settings

- CEM
- Speed
- Auto-complete gas names

Apply
RGA Table Scan

<table>
<thead>
<tr>
<th>Ch#</th>
<th>Name</th>
<th>Mass</th>
<th>mBar</th>
<th>Alarm</th>
<th>Speed</th>
<th>Cal</th>
<th>CEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydrogen</td>
<td>2</td>
<td>9.3E-08</td>
<td>NORMAL</td>
<td>3</td>
<td>1.00</td>
<td>OFF</td>
</tr>
<tr>
<td>2</td>
<td>Water</td>
<td>18</td>
<td>3.9E-08</td>
<td>HIGH</td>
<td>3</td>
<td>1.00</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>Nitrogen</td>
<td>28</td>
<td>9.4E-09</td>
<td>LOW</td>
<td>3</td>
<td>1.00</td>
<td>OFF</td>
</tr>
<tr>
<td>4</td>
<td>Oxygen</td>
<td>32</td>
<td>1.8E-09</td>
<td>NORMAL</td>
<td>3</td>
<td>1.00</td>
<td>OFF</td>
</tr>
<tr>
<td>5</td>
<td>CO2</td>
<td>44</td>
<td>4.4E-09</td>
<td>NORMAL</td>
<td>3</td>
<td>1.00</td>
<td>OFF</td>
</tr>
<tr>
<td>6</td>
<td>Oil</td>
<td>55</td>
<td>6.6E-09</td>
<td>NORMAL</td>
<td>3</td>
<td>1.00</td>
<td>OFF</td>
</tr>
<tr>
<td>10</td>
<td>Floor</td>
<td>21</td>
<td>1.8E-09</td>
<td>NORMAL</td>
<td>3</td>
<td>1.00</td>
<td>OFF</td>
</tr>
</tbody>
</table>
Pressure vs. Time
Pressure vs. time

• Use the single mass measurement capability of the SRS RGA to follow the concentrations of up to ten gases as a function of time.

• RGA Windows displays the data in colors so the different gases can be easily visualized.

• Cursors and legends provide real time partial pressure values

• Perform process analysis, rate-of-rise and pump-down measurements.
P vs. time

Airlock Sequence

Legend:
- 1.04e-005 Hydrogen
- 9.88e-008 Water
- 3.08e-008 Nitrogen
- 2.43e-009 Oxygen
- 2.51e-008 Oil
- 2.10e-009 Floor

Cursor

Time (hh:mm:ss)

Graphical representation of pressure (P) over time, with a cursor and a legend indicating various substances and their pressure levels.
Leak Test
Leak Test Mode

- The single mass measurement capability of the SRS RGA is used to monitor an individual gas in real time.
- Any gas within the mass range can be monitored
- Sound alarms and pressure-proportional tones provide audio feedback
- Gas levels can be displayed in Amps, Torr or Torr·L·s⁻¹
- A built in leak valve can be used to calibrate the RGA in-situ - Leak Rate Tuning
Leak Test Mode

- The most common use of Leak Test mode is to detect gas leaks in vacuum systems.
- RGAs are excellent leak detectors!
Leak Test Example
Why Leak Test with an RGA?

- Use any gas, not just Helium!
- Dynamic Testing
- Inside-out-leak testing
- Leak rate display
- Process control as well!
- Distinguish between outgassing, virtual leaks and real leaks
- Cheaper
- Lower maintenance
- No more sharing. Dedicated RGA!
Leak Rate Tuning

\[Q_{\text{cal}} = P \cdot S_{\text{pump}} \]

- \(Q_{\text{cal}} \): reference leak rate, Torr\cdot L\cdot s^{-1}
- \(P \): partial pressure reading, Torr (tracer gas)
- \(S_{\text{pump}} \): leak rate factor, L\cdot s^{-1}
Leak Rate Tuning

1. Enter reference leak rate
2. Enter mass of the tracer gas
3. Press the Measure button
4. The Leak Rate Factor \((S_{\text{pump}}) \) is calculated and stored within RGA Windows.
Next.....

- Hands-on RGA demo
- RGA Windows tutorial
- Learn how to use your RGA as a leak detector
- Discuss your specific applications
- “Questions & Answers” session
What did I leave out?
Any questions?
Thank you....
See you later...